Government General Degree College, Chapra

Internal Assessment- 1st Semester, 2020-21

Sub.- Physics

Paper: MATHEMATICAL PHYSICS-I

Total Marks: 15 Time: 40 minutes

Answer any three questions only:

- 1. (a) Find a unit vector normal to $\vec{A} = 2\hat{\imath} + 4\hat{\jmath} 5\hat{k}$ and $\vec{B} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. 2
 (b) Using Stoke's law, prove that $\vec{\nabla} \times \vec{\nabla} \phi = 0$.
- 2. (a) The position vectors of three points \vec{A} , \vec{B} and \vec{C} are $\vec{r_1} = \hat{\imath} + 2\hat{\jmath} + \hat{k}$, $\vec{r_2} = 3\hat{\imath} + 2\hat{\jmath} 3\hat{k}$ and $\vec{r_3} = 2\hat{\imath} + 2\hat{\jmath} 3\hat{k}$. Find the area of the triangle. 3 (b) $\vec{\omega}$ is a constant vector and \vec{r} is the position vector of a point. If $\vec{v} = \vec{\omega} \times \vec{r}$, then prove that $\vec{\nabla} \cdot \vec{v} = 0$.
- 3. (a) Solve the differential equation $(x+1)\frac{dy}{dx} y = e^x (x+1)^2$. 3 (b) Find the Taylor series expansion of lnx about x=2.
- 4. Solve the equation y'' + 6y' + 8y = 0, subject to the condition y = 1, y' = 0 at x = 0, where, $y' = \frac{dy}{dx}$ and $y'' = \frac{d^2y}{dx^2}$.